30 resultados para Bone Marrow Transplantation

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Macrophages in the olfactory neuroepithelium are thought to play major roles in tissue homeostasis and repair. However, little information is available at present about possible heterogeneity of these monocyte-derived cells, their turnover rates, and the role of chemokine receptors in this process. To start addressing these issues, this study used Cx3cr1gfp mice, in which the gene sequence for eGFP was knocked into the CX3CR1 gene locus in the mutant allele. Using neuroepithelial whole-mounts from Cx3cr1gfp/+ mice, we show that eGFP+ cells of monocytic origin are distributed in a loose network throughout this tissue and can be subdivided further into two immunophenotypically distinct subsets based on MHC-II glycoprotein expression. BM chimeric mice were created using Cx3cr1gfp/+ donors to investigate turnover of macrophages (and other monocyte-derived cells) in the olfactory neuroepithelium. Our data indicate that the monocyte-derived cell population in the olfactory neuroepithelium is actively replenished by circulating monocytes and under the experimental conditions, completely turned over within 6 months. Transplantation of Cx3cr1gfp/gfp (i.e., CX3CR1-deficient) BM partially impaired the replenishment process and resulted in an overall decline of the total monocyte-derived cell number in the olfactory epithelium. Interestingly, replenishment of the CD68lowMHC-II+ subset appeared minimally affected by CX3CR1 deficiency. Taken together, the established baseline data about heterogeneity of monocyte-derived cells, their replenishment rates, and the role of CX3CR1 provide a solid basis to further examine the importance of different monocyte subsets for neuroregeneration at this unique frontier with the external environment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The mouse dura mater, pia mater, and choroid plexus contain resident macrophages and dendritic cells (DCs). These cells participate in immune surveillance, phagocytosis of cellular debris, uptake of antigens from the surrounding cerebrospinal fluid and immune regulation in many pathologic processes. We used Cx3cr1 knock-in, CD11c-eYFP transgenic and bone marrow chimeric mice to characterize the phenotype, density and replenishment rate of monocyte-derived cells in the meninges and choroid plexus and to assess the role of the chemokine receptor CX3CR1 on their number and tissue distribution. Iba-1 major histocompatibility complex (MHC) Class II CD169 CD68 macrophages and CD11c putative DCs were identified in meningeal and choroid plexus whole mounts. Comparison of homozygous and heterozygous Cx3cr1 mice did not reveal CX3CR1-dependancy on density, distribution or phenotype of monocyte-derived cells. In turnover studies, wild type lethally irradiated mice were reconstituted with Cx3cr1/-positive bone marrow and were analyzed at 3 days, 1, 2, 4 and 8 weeks after transplantation. There was a rapid replenishment of CX3CR1-positive cells in the dura mater (at 4 weeks) and the choroid plexus was fully reconstituted by 8 weeks. These data provide the foundation for future studies on the role of resident macrophages and DCs in conditions such as meningitis, autoimmune inflammatory disease and in therapies involving irradiation and hematopoietic or stem cell transplantation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Granulocyte colony-stimulating factor (G-CSF) is the major regulator of granulopoiesis and acts through binding to its specific receptor (G-CSF-R) on neutrophilic granulocytes. Previous studies of signaling from the 4 G-CSF-R cytoplasmic tyrosine residues used model cell lines that may have idiosyncratic, nonphysiological responses. This study aimed to identify specific signals transmitted by the receptor tyrosine residues in primary myeloid cells. To bypass the presence of endogenous G-CSF-R, a chimeric receptor containing the extracellular domain of the epidermal growth factor receptor in place of the entire extracellular domain of the G-CSF-R was used. A series of chimeric receptors containing tyrosine mutations to phenylalanine, either individually or collectively, was constructed and expressed in primary bone marrow cells from G-CSF-deficient mice. Proliferation and differentiation responses of receptor-expressing bone marrow cells stimulated by epidermal growth factor were measured. An increased 50% effective concentration to stimulus of the receptor Ynull mutant indicated that specific signals from tyrosine residues were required for cell proliferation, particularly at low concentrations of stimulus. Impaired responses by mutant receptors implicated G-CSF-R Y764 in cell proliferation and Y729 in granulocyte differentiation signaling. In addition, different sensitivities to ligand stimulation between mutant receptors indicated that G-CSF-R Y744 and possibly Y729 have an inhibitory role in cell proliferation. STAT activation was not affected by tyrosine mutations, whereas ERK activation appeared to depend, at least in part, on Y764. These observations have suggested novel roles for the G-CSF-R tyrosine residues in primary cells that were not observed previously in studies in cell lines.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The mammalian cornea contains an extensive network of resident macrophages and dendritic cells. To determine the role of these cells in LPS-induced corneal inflammation, TLR4−/− mice were sublethally irradiated and reconstituted with bone marrow cells from either enhanced GFP (eGFP)+/C57BL/6 or eGFP+/TLR4−/− mice. The corneal epithelium was abraded, LPS was added topically, and cellular infiltration to the corneal stroma and development of corneal haze were examined after 24 h. TLR4−/− mice reconstituted with C57BL/6, but not TLR4−/− bone marrow cells donor cells were found to cause infiltration of eGFP+ cells to the cornea, including neutrophils, and also increased corneal haze compared with saline-treated corneas. In a second experimental approach, corneas of transgenic macrophage Fas induced apoptosis (Mafia) mice were stimulated with LPS. These mice express eGFP and a suicide gene under control of the c-fms promoter, and systemic treatment with the FK506 dimerizer (AP20187) causes Fas-mediated apoptosis of monocytic cells. AP20187-treated mice had significantly fewer eGFP+ cells in the cornea than untreated mice. After stimulation with LPS neutrophil recruitment and development of corneal haze were impaired in AP20187-treated mice compared with untreated controls. Furthermore, LPS induced CXCL1/KC and IL-1α production within 4 h in corneas of untreated Mafia mice, which is before cellular infiltration; however, cytokine production was impaired after AP20187 treatment. Together, results from both experimental approaches demonstrate an essential role for resident corneal monocytic lineage cells (macrophages and dendritic cells) in development of corneal inflammation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In light of an increasing awareness of the presence of bone marrow (BM)-derived macrophages in the normal cornea and their uncertain role in corneal diseases, it is important that the turnover rate of these resident immune cells be established. The baseline density and distribution of macrophages in the corneal stroma was investigated in Cx3cr1gfp transgenic mice in which all monocyte-derived cells express enhanced green fluorescent protein (eGFP). To quantify turnover, BM-derived cells from transgenic eGFP mice were transplanted into whole-body irradiated wild-type recipients. Additionally, wild-type BM-derived cells were injected into irradiated Cx3cr1+/gfp recipients, creating reverse chimeras. At 2, 4 and 8 weeks post-reconstitution, the number of eGFP+ cells in each corneal whole mount was calculated using epifluorescence microscopy, immunofluorescence staining and confocal microscopy. The total density of myeloid-derived cells in the normal Cx3cr1+/gfp cornea was 366 cells/mm2. In BM chimeras 2 weeks post-reconstitution, 24% of the myeloid-derived cells had been replenished and were predominantly located in the anterior stroma. By 8 weeks post-reconstitution 75% of the myeloid-derived cells had been replaced and these cells were distributed uniformly throughout the stroma. All donor eGFP+ cells expressed low to moderate levels of CD45 and CD11b, with approximately 25% coexpressing major histocompatibility complex class II, a phenotype characteristic of previous descriptions of corneal stromal macrophages. In conclusion, 75% of the myeloid-derived cells in the mouse corneal stroma are replenished after 8 weeks. These data provide a strong basis for functional investigations of the role of resident stromal macrophages versus non-haematopoietic cells using BM chimeric mice in models of corneal inflammation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Acute Lymphoblastic Leukaemia (ALL) is the most common cancer in children. Over the past four decades, research has advanced the treatment of this cancer from a less than 60% chance of survival to over 85% today. The causal molecular mechanisms remain unclear. Here, we performed sequencing-based genomic DNA methylation profiling of eight paediatric ALL patients using archived bone marrow smear microscope slides. FINDINGS: SOLiD™ sequencing data was collected from Methyl-Binding Domain (MBD) enriched fractions of genomic DNA. The primary tumour and remission bone marrow sample was analysed from eight patients. Four patients relapsed and the relapsed tumour was analysed. Input and MBD-enriched DNA from each sample was sequenced, aligned to the hg19 reference genome and analysed for enrichment peaks using MACS (Model-based Analysis for ChIP-Seq) and HOMER (Hypergeometric Optimization of Motif EnRichment). In total, 3.67 gigabases (Gb) were sequenced, 2.74 Gb were aligned to the reference genome (average 74.66% alignment efficiency). This dataset enables the interrogation of differential DNA methylation associated with paediatric ALL. Preliminary results reveal concordant regions of enrichment indicative of a DNA methylation signature. CONCLUSION: Our dataset represents one of the first SOLiD™MBD-Seq studies performed on paediatric ALL and is the first to utilise archival bone marrow smears. Differential DNA methylation between cancer and equivalent disease-free tissue can be identified and correlated with existing and published genomic studies. Given the rarity of paediatric haematopoietic malignancies, relative to adult counterparts, our demonstration of the utility of archived bone marrow smear samples to high-throughput methylation sequencing approaches offers tremendous potential to explore the role of DNA methylation in the aetiology of cancer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The extracellular microenvironment in bone marrow (BM) is known to regulate the growth and differentiation of hematopoietic stem and progenitor cells (HSPC). We have developed cell-free matrices from a BM stromal cell line (HS-5), which can be used as substrates either in native form or as tissue engineered coatings, for the enhanced ex vivo expansion of umbilical cord blood (UCB) derived HSPC. The physicochemical properties (surface roughness, thickness, and uniformity) of native and spin coated acellular matrices (ACM) were studied using scanning and atomic force microscopy (SEM and AFM). Lineage-specific expansion of HSPC, grown on these substrates, was evaluated by immunophenotypic (flow cytometry) and functional (colony forming) assays. Our results show that the most efficient expansion of lineage-specific HSPC occurred on spin coated ACM. Our method provides an improved protocol for ex vivo HSPC expansion and it offers a system to study the in vivo roles of specific molecules in the hematopoietic niche that influence HSPC expansion.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The oxazaphosphorines including cyclophosphamide (CPA), ifosfamide (IFO), and trofosfamide represent an important group of therapeutic agents due to their substantial antitumor and immuno-modulating activity. CPA is widely used as an anticancer drug, an immunosuppressant, and for the mobilization of hematopoetic progenitor cells from the bone marrow into peripheral blood prior to bone marrow transplantation for aplastic anemia, leukemia, and other malignancies. New oxazaphosphorines derivatives have been developed in an attempt to improve selectivity and response with reduced toxicity. These derivatives include mafosfamide (NSC 345842), glufosfamide (D19575, β-D-glucosylisophosphoramide mustard), NSC 612567 (aldophosphamide perhydrothiazine), and NSC 613060 (aldophosphamide thiazolidine). This review highlights the metabolism and transport of these oxazaphosphorines (mainly CPA and IFO, as these two oxazaphosphorine drugs are the most widely used alkylating agents) and the clinical implications. Both CPA and IFO are prodrugs that require activation by hepatic cytochrome P450 (CYP)-catalyzed 4-hydroxylation, yielding cytotoxic nitrogen mustards capable of reacting with DNA molecules to form crosslinks and lead to cell apoptosis and/or necrosis. Such prodrug activation can be enhanced within tumor cells by the CYP-based gene directed-enzyme prodrug therapy (GDEPT) approach. However, those newly synthesized oxazaphosphorine derivatives such as glufosfamide, NSC 612567 and NSC 613060, do not need hepatic activation. They are activated through other enzymatic and/or non-enzymatic pathways. For example, both NSC 612567 and NSC 613060 can be activated by plain phosphodiesterase (PDEs) in plasma and other tissues or by the high-affinity nuclear 3'-5' exonucleases associated with DNA polymerases, such as DNA polymerases and ε. The alternative CYP-catalyzed inactivation pathway by N-dechloroethylation generates the neurotoxic and nephrotoxic byproduct chloroacetaldehyde (CAA). Various aldehyde dehydrogenases (ALDHs) and glutathione S-transferases (GSTs) are involved in the detoxification of oxazaphosphorine metabolites. The metabolism of oxazaphosphorines is auto-inducible, with the activation of the orphan nuclear receptor pregnane X receptor (PXR) being the major mechanism. Oxazaphosphorine metabolism is affected by a number of factors associated with the drugs (e.g., dosage, route of administration, chirality, and drug combination) and patients (e.g., age, gender, renal and hepatic function). Several drug transporters, such as breast cancer resistance protein (BCRP), multidrug resistance associated proteins (MRP1, MRP2, and MRP4) are involved in the active uptake and efflux of parental oxazaphosphorines, their cytotoxic mustards and conjugates in hepatocytes and tumor cells. Oxazaphosphorine metabolism and transport have a major impact on pharmacokinetic variability, pharmacokinetic-pharmacodynamic relationship, toxicity, resistance, and drug interactions since the drug-metabolizing enzymes and drug transporters involved are key determinants of the pharmacokinetics and pharmacodynamics of oxazaphosphorines. A better understanding of the factors that affect the metabolism and transport of oxazaphosphorines is important for their optional use in cancer chemotherapy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Heart failure (HF) is an increasingly recognized complication of diabetes. Cardiac fibrosis is an important causative mechanism of HF associated with diabetes. Recent data indicate that inflammation may be particularly important in the pathogenesis of cardiovascular fibrosis. We sought to determine the mechanism by which cardiac fibrosis develops and to specifically investigate the role of the CXCR4 axis in this process. Animals with type I diabetes (streptozotocin treated mice) or type II diabetes (Israeli Sand-rats) and controls were randomized to treatment with a CXCR4 antagonist, candesartan or vehicle control. Additional groups of mice also underwent bone marrow transplantation (GFP+ donor marrow) to investigate the potential role of bone marrow derived cell mobilization in the pathogenesis of cardiac fibrosis. Both type I and II models of diabetes were accompanied by the development of significant cardiac fibrosis. CXCR4 antagonism markedly reduced cardiac fibrosis in both models of diabetes, similar in magnitude to that seen with candesartan. In contrast to candesartan, the anti-fibrotic actions of CXCR4 antagonism occurred in a blood pressure independent manner. Whilst the induction of diabetes did not increase the overall myocardial burden of GFP+ cells, it was accompanied by an increase in GFP+ cells expressing the fibroblast marker alpha-smooth muscle actin and this was attenuated by CXCR4 antagonism. CXCR4 antagonism was also accompanied by increased levels of circulating regulatory T cells. Taken together the current data indicate that pharmacological inhibition of CXCR4 significantly reduces diabetes induced cardiac fibrosis, providing a potentially important therapeutic approach.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Since the first corneal transplant in 1905, improved surgical techniques and the development of immunosuppressive drugs have led to excellent success rates for organ and tissue transplantation procedures. This Chapter ,"'ill focus on the cadaveric donation of tissue and the attitudes towards it of health professionals, because they are key players in the donation- transplantation process.

The chapter begins with an overview of cadaveric tissue donation, including what can currently be transplanted. It will then present what is known about health professionals' attitudes to and knowledge of tissue donation and the impact that these have on donation rates. Attitudes, their components and their effect upon behaviour are explored using theories arising from social psychology to explain how these influence actual or intended behaviours associated with the discussion of donation wishes with relatives of the potential donor. Since some tissues, such as blood and bone marrow, can only normally be donated during life, these will be excluded since the behaviours associated with blood donation differ significantly from those associated with cadaveric tissue donation.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Context:
Increased mechanical loading can promote the preferential differentiation of bone marrow mesenchymal stem cells to osteoblastogenesis, but it is not known whether long-term bone strength-enhancing exercise in humans can reduce marrow adiposity.

Objective:
Our objective was to examine whether bone marrow density (MaD), as an estimate of marrow adiposity 1) differs between young female athletes with contrasting loading histories and bone strengths and 2) is an independent predictor of bone strength at the weight-bearing tibia.

Design:
Mid-tibial MaD, cortical area (CoA), total area, medullary area, strength strain index (SSI), and cortical volumetric bone mineral density (vBMD) (total, endocortical, midcortical, and pericortical) was assessed using peripheral quantitative computed tomography in 179 female athletes involved in both impact and nonimpact loading sports and 41 controls aged 17–40 years.

Results:
As we have previously reported CoA, total area, and SSI were 16% to 24% greater in the impact group compared with the controls (all P < .001) and 12% to 18% greater than in the nonimpact group (all P < .001). The impact group also had 0.5% higher MaD than the nonimpact and control groups (both P < .05). Regression analysis further showed that midtibial MaD was significantly associated with SSI, CoA, endocortical vBMD, and pericortical vBMD (P < .05) in all women combined, after adjusting for age, bone length, loading groups, medullary area, muscle cross-sectional area, and percent fat.

Conclusion:
In young female athletes, tibial bone MaD was associated with loading history and was an independent predictor of tibial bone strength. These findings suggest that an exercise-induced increase in bone strength may be mediated via reduced bone marrow adiposity and consequently increased osteoblastogenesis.